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be unity, i.e. 

h = n / f 3g  2 = clj C2j C3j, 

and q3 is the characteristic function of  the cube-free 
integers, i.e. qa(n) = 0 if n is divisible by a cube and 
qa(n) = 1 otherwise. 

Only a small fraction of these lattices have truly three- 
dimensional structures with f > 1 (Rutherford, 1993), 
and since the general formulae for the numbers of 
subgroups are complex, these cases were considered 
individually. 

Concluding remarks 

After applying Polya's  theorem, and removing by 
recursion the patterns of lower true index, we find 
K(n,  m). Table 1 contains the relevant results for indices 
up to 20. These may be combined with the number of 
lattices belonging to each colour lattice group, given in 
Tables 1 and 2 of Rutherford (1993), to give the total 
number of patterns; for example, for n = 5 and m = 2 in 
two dimensions, we have 

2tr1(5 ) = 2 x 6 = 12 

possible patterns. These are shown in Fig. 2. 
A more complex example in two dimensions is 

n = 18, m = 6. Here, there are 36 lattices belonging to 
colour lattice group CIs and 3 to  C 6 X C 3. For the former 
and m = 6, the total number of patterns is 1026, the latter 
1024. This gives as the total number: 

(36 x 1026) + (3 x 1024) = 40008. 

The number of patterns in three dimensions is consider- 
ably larger still; for example, for n = 16, m = 8, we have 

(448 x 8 0 0 ) +  (168 x 7 9 2 ) +  (28 x 7 9 2 ) +  (7 x 778) 

= 519 078. 

I wish to thank Professor Y. BiUiet for suggesting 
improvements to, and correcting some errors in, the 
original manuscript. 
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Abstract 
Apprordmations of weighting-factor functions are used 
when determining coordination numbers from differ- 
ential anomalous scattering (DAS) experiments. The 
accuracy of two single-value approximations for the 
weighting functions are tested using non-interacting 
hard-sphere models of systems that have been studied 
previously with DAS. The first approximation is an 
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average of the weighting-factor function over the 
experimental wave-vector range. The second is the 
weighting-function value at the wave vector that is 
related to a peak position in the corresponding 
differential radial distribution function (dRDF). It was 
found that the first approximation introduced up to 10% 
error into calculated coordination numbers. The second 
weighting-factor approximation introduced minimal error 
into the coordination-number calculations and is simple 
to use. 
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I. Introduction 

Differential anomalous X-ray scattering (DAS) is an 
important technique used to probe the local structure 
surrounding specific atoms in multicomponent amor- 
phous materials. The method has been used to study 
binary metal alloys (Fuoss, Eisenberger, Warbm.ton & 
Bienenstock, 1981; Fuoss, Warburton & Bienenstock, 
1980; Am" et al., 1983; Fischer-Colbrie, Bienenstock, 
Fuoss & Marcus, 1988; Tonnerre, DeLima & Raoux, 
1989), molecular liquids (Ludwig, Warbm.ton, Wilson & 
Bienenstock, 1987; Schultz, Bertagnolli & Frahm, 1990; 
Mager, Schultz, Bertagnolli & Frahm, 1990; Mager, 
Bertagnolli, Degenhardt & Frahm, 1991) and salt 
solutions (Ludwig, Warburton & Fontaine, 1987; Dreier 
& Rabe, 1986). We have used the technique to study the 
chemical and structural environment of salts dissolved in 
polymer matrices, such as ZnBr 2 in poly(propylene 
oxide) (Fishbum & Barton, 1995). 

The atomic scattering factor is expressed as (James, 
1982) 

f ( k , E )  =f0(k) + f ' ( E )  + if"(E), (1) 

where f0 is the energy-independent component andf '  and 
f "  are the anomalous scattering corrections. Both f '  and 
f "  vary slowly with energy, except very close to an 
absorption edge; the DAS method exploits this rapid 
change in the vicinity of the edge. In Fig. 1, f " ( E )  and 
f ' ( E )  are shown for Zr. Note that strong changes in f '  are 
observed within a few hundred eV of the K-shell 
absorption edge at 17.998 keV. Suppose that one has a 
multicomponent sample in which Zr is present and that 
two separate scattering experiments are performed using 
different X-ray energies E a and E b, where E a is far from 
the Zr absorption edge and Et, is very close to the 
absorption edge. The difference between the coherent 
X-ray scattering intensities at E a and E b, as a function of 
the wave vector k = (4rr sin 0)/2, is a weighted sum of 
only partial structure factors that contain Zr as one of the 
atoms. From the intensity difference, one determines a 
differential structure factor (dSF) and this can be Fourier 
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Fig. 1. Anomalous scattering factors,f '(E) andf"(E), for an isolated Zr 
atom near the K-shell absorption edge. E a and E b are the two energies 
at which the model structure factors are calculated. 

sine transformed into a real-space differential radial 
distribution function (dRDF) describing the chemical 
environment around the Zr atom. 

We questioned the validity of certain approximations 
made in obtaining coordination numbers from the dRDF. 
Since the coordination numbers are of central importance 
in most scattering studies, including our own, we feel a 
need to explore this problem in more depth. 

Below, we first provide a more specific statement of 
the problem. Next, we model a DAS experiment by a 
hard-sphere binary liquid in which the size and 
concentration of the two components is varied. We then 
make a comparison between the exact dRDF and the 
dRDFs calculated from the partial structure factors using 
different approximations. We show that the exact dRDF 
can be reproduced using an approximation slightly 
different from that previously reported (Ludwig, 
Warburton & Fontaine, 1987; Dreier & Rabe, 1986). 

A. Statement o f  the problem 

Consider a multicomponent amorphous solid or liquid 
containing atoms of type 1, 2, 3 ..... n. With the absorbing 
species labeled as atom 1, the intensity difference is 
written explicitly as (Dreier & Rabe, 1986) 

abs = l ah(k) - l h(k) 

= 2 c l A f ( ~ ~ q R e ( ~ ) [ a l j ( k  ) - 1], (2) 

where z~_ signifies the difference between the values at E a 
and gb,fj is averaged between the two energies, and cj is 
the atomic fraction of species j. [alj(k ) - 1] is a Faber- 
Ziman partial structure factor (Faber & Ziman, 1965), 
defined by the partial pair correlation functions, glj(r): 

oo 

k[alj(k ) - 1] -- 4rrpo f r[glj(r ) - 1] sin(kr) dr, (3) 
0 

where glj(r) is related to the partial density distribution 

Plj(r) = 47rr2 CjPog lj(r). (4) 

In the above notation, p~j(r) is the density of j-type atoms 
surrounding an atom of type 1 and Po is the sample 
average density. 

In any system of N different atom types, the real-space 
structure is described by a set of N ( N  + 1)/2 distinct 
partial pair correlations. Since we have designated one 
atom in each pair as type 1, there are now only N 
contributions to the real-space distribution. We define the 
differential structure factor (dSF), al(k ), by 

N 

[al(k ) - 1] = ~-~[cjRe(fj)/Re((f))][alj(k ) - 1], (5) 
j=l 

where 

<?> - E c£,, 
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which is related to the scattered intensity by (2) (Schultz, 
Bertagnolli & Frahm, 1990; Mager, Schultz, Bertagnolli 
& Frahm, 1990; Mager, Bertagnolli, Degenhardt & 
Frahm, 1991; Dreier & Rabe, 1986). 

[al(k ) - -  1] = AlabS/2clAf(Re(J;). (6) 

The differential structure factor obtained for the DAS 
experiment is the inteference function arising from the 
average packing of atoms around the type-1 atom in the 
system. 

To obtain the real-space representation, the dSF is 
Fourier sine transformed into the differential radial 
distribution function (dRDF) (Schultz, Bertagnolli & 
Frahm, 1990; Mager, Schultz, Bertagnolli & Frahm, 
1990; Mager, Bertagnolli, Degenhardt & Frahm, 1991; 
Dreier & Rabe, 1986): 

dRDF = 4rrr2 pogl (r) 
oo 

= 4rrr2po + (2r/rr) f k[al(k ) - 1] sin(kr) dk, 
0 

(7) 

where the transform of al(k ) - 1 is actually the sum of 
the convolutions 

dRDF = 4rrr2po + (2r/rr) 

x~j[~ok[alj(k)-l]sin(kr)dk ] 

• [~oCj[Re(fj)/Re((f))]sin(kr)dk]. (8) 

More thorough descriptions of the DAS method were 
documented by Tonnerre, DeLima & Raoux (1989), 
Dreier & Rabe (1986) and Fishburn & Barton (1995). 

Each peak in the dRDF corresponds to a coordination 
shell around atom type 1. If it is known that only type-j 
atoms occupy a coordination shell between r~ and r 2, 
then the coordination number of j  atoms is approximated 
by 

r2 

Nlj ~-- (Re(3;)/Re(fij)) f 4rrr2pog~(r) dr, (9) 
r l  

where (Re(f) /Re(f j ) )  must be averaged in order to 
interpret the real-space data. Because the main usefulness 
of the DAS method is the determination of coordination 
numbers, our problem is to determine the accurac), of the 
averaging approximation for (Re(fi)/Re(fij)). We 
approach the problem by first generating a dSF from a 
set of model partial structure factors using (5). Equation 
(7) is then used to calculate the dRDF for the model. 
This 'exact' dRDF is then compared with two dRDFs 

l 
enerated from dSFs in which the weighting factor, 
Re(f/)/Re((3;))) [(5)], is: (1) averaged over the k range 

of the data; and (2) a fixed value at kp = 27r/rp, where rp 
is the position of the coordination peak of interest. We 

fred that the k averaging can introduce errors as large as 
10% for simple binary systems but that fLxing the 
weighting factor at the kp value produces a dRDF almost 
identical to that obtained using the exact expression. 

II. Modeling 

We modeled DAS experiments for the systems MoxNil_ x 
(Aur et al., 1983) and Ni2Zr (Tonnerre, DeLima & 
Raoux, 1989), for which previous studies are reported. In 
MoxNil_ x, the atoms are of similar size and, in Ni2Zr, 
there is enough of a size difference to partially separate 
the contributions to the first peak of the dRDF. Because 
there is no way to extract the individual partial structure 
factors from the experimental dSFs accurately, we are 
unable to access the accuracy of the approximations 
using the existing experimental data. Therefore, we 
modeled the experimentally determined dRDFs using 
non-interacting hard spheres in a two-component liquid 
(Ashcroft & Langreth, 1967; Islam, 1981). The model 
was dependent on only three variables: (1) r/, the fraction 
of the total volume occupied by the spheres; (2) x, the 
atomic fraction of the larger spheres; and (3) tz, the ratio 
of the sphere diameters, o'1/o" 2, where sphere type 2 
always represents the larger sphere. The atomic fraction 
used was the same as in the experiments and the sphere 
diameters were taken from tables of metallic radii 
(Shriver, Atkins & Langford, 1990). 

We first calculated the partial struc_ture factors of (3) 
and the weighting factors, Re(fj) /Re(f) ,  in (5) based on 
the hard-sphere model. The differential structure factors, 
[al(k ) - 1], were then calculated [(5)] using three sets of 
weighting factors: (1) the correct k-dependent functions; 
(2) the average value of the weighting factor over all 
k-space data; and (3) the value of the weighting factor at 
kp = 2rr/rp. The dRDFs were then calculated for each 
case from (7). The dRDF transform from the dSF using 
the correct weighting factors is referred to as the exact 
dRDF. For clarity, the two approximations will be called 
the k-averaged case and the k-peak case. 

A. Example 1, MoxNil_ x 

The first system modeled is amorphous MoxNix_ x (Aur 
et al., 1983), where the two atoms are very similar 
in size, dMo = 2.80 and dNi "-2.50A. We model the 
DAS from the Mo K edge at E,, = 19.781 and 
E b = 19.959keV as in the original experiment, with 
the modeling parameters listed in Table 1. In calculating 
the weighting factors, the values for f0 are calculated 
from the fitting parameters of Cromer & Mann (1968) 
and the f '  values are calculated by a Kramers-Kronig 
inversion (Kawamura & Fukamachi, 1978; Hoyt, de 
Fontaine & Warburton, 1984) of the X-ray cross-section 
data found in the McMaster tables (McMaster, del 
Grande, Mallett & Hubbell, 1969). A k range of 
0.073 < k < 19.491 ~-1 is used. 
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Table 1. Parameters used in calculating the hard-sphere- 
model structure factors 

The parameters are: r/, the occupied volume; x, the atomic fraction of 
the larger spheres; and a, the ratio of the sphere diameters (Ashcroft & 
Langreth, 1967). 

Model r/ x a 
MosoNis0 0.460 0.500 0.893 

Ni2Zr 0.460 0.333 0.781 

While only an experiment with XMo = 0.50 is 
reported, the Mo concentration in the modeling is varied 
to determine the effect, if any, of concentration in the 
approximations. Regardless of concentration, the use 
of a k-averaged or k-peak weighting factor makes little 
difference in the first peak of the dRDF which contains 
contributions from both Mo-Ni and Mo-Mo pairs. This 
fortuitous agreement between the exact and approxi- 
mated solutions is due to a simultaneous overestimation 
of PMoNi(r) and underestimation of PMoMo(r) in the 
vicinity of the first peak as shown in Figs. 2(a) and (b). 

The first coordination peak from the weighted Mo-Ni 
pair distribution using the k-averaged weighting factor is 
larger than the same peak in the exact distribution while 
the first Mo-Ni peak in the k-peak dRDF is essentially 
identical to the corresponding peak in the exact dis- 
tribution (Fig. 2a). But the first coordination peak in the 
Mo-Mo weighted pair distribution created using the k- 
averaged weighting factor is smaller than the peak from 
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Fig. 2. Weighted pair distribution functions calculated from the Mo 
edge of the MosoNis0 model. First coordination peaks of (a) the 
Mo-Ni and (b) the Mo--Mo pair coordinations. Solid lines: exact 
distributions; dashed lines: k-averaged approximated distributions; 
dotted lines: k-peak approximated distributions. 

the exact distribution function, while the first peak using 
the k-peak approximation is again identical to the exact 
case (Fig. 2b). This is true for x = 0.25, 0.50 and 0.75. 

By choosing a system with a greater difference of 
atomic sizes, the 1-1- and 1-2-type coordinations are 
separated in r and errors introduced by approximating the 
weighting factors become more visible in the dRDF. 

B. Example 2, Ni2Zr 

The second system modeled was amorphous Ni2Zr 
(Tonnerre, DeLima & Raoux, 1989) with the metallic 
radii dNi = 2.50 and dzr = 3.20 A. We model the DAS 
from the Zr K edge between the scattering curves 
measured at 17.398 and 17.987 keV from k = 0.073 to 
17.447 ,~-1. The model parameters are listed in Table 1. 

The behavior observed in the MoxNi1_ x model also 
occurs with the Ni2Zr model. When using the k-averaged 
weighting factors, the first Zr-Ni coordination peak is 
larger than the corresponding peak in the correct dRDF, 
while the first Zr-Zr peak is smaller than the Zr-Zr peak 
in the correct dRDF (Fig. 3). The dRDF created with the 
k-peak weighting factors is in excellent agreement with 
the exact dRDF (Fig. 3). 

I l l .  Discuss ion 

How do these examples relate to the experimental case 
where one always interprets the exact dRDF? It is the 
inverse of the weighting factor that is used to extract 
the coordination numbers from the peak area in (9). 
Therefore, an overestimation of the weighting factor 
corresponds to an underestimation of the calculated 
coordination numbers. In the two examples given, the 
1-2 weighting factor is too large and the 1-1 weighting 
factor is too small with the k-averaged approximation. 
One expects, then, that for both models the 1-2 
coordination number calculated using (9) is artificially 
low while that for the 1-1 coordination is too large. 

1 5 -  Zr-Zr / 

1 0  , , ~ Z r _ N i / . / /  -, 

/ Weighting Factor 
5 

Correct 
........... k averaged 

k peak 
0 

4 I I I 
2.5 2.8 3.1 3.4 3.7 4.0 

r (Angstroms) 
Fig. 3. Differential radial distribution functions calculated from the Zr 

edge of the Ni2Zr model. Solid line: exact distribution function; 
dashed line: k-average approximated distribution function; dotted 
line: k-peak approximated distribution function. 
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Table 2. Coordination numbers calculated using the two 
approximations to the weighting factor  in equation (9) 

The Ni2Zr coordination numbers are determined from the model 
distribution function while the [-PPO]6ZnBr 2 coordination numbers are 
determined from experimental data (Fishburn & Barton, 1995). 

Coordination k averaged k peak Sample 
NiEZr 

[PPO]6ZnBr 2 

Zr-Ni 3.76 3.92 
Zr-Zr 4.99 4.45 

Zn-O 2.04 1.90 
Zn-Br 1.67 1.83 
Br-Zn 1.17 1.31 

support our conclusion that, on average, each Zn 2+ cation 
is coordinated with two Br and two O atoms. 

IV. Concluding remarks 

With the use of  k-averaged weighting factors, coordina- 
tion numbers can be over- or underestimated by as much 
as 10%. This could be a serious obstacle in proposing 
structures for the coordination numbers calculated with 
the DAS method. We have shown that using k-peak 
values is, by contrast, an excellent approximation. 

However ,  no significant deviations from the exact  
solution are observed when using the k-peak weighting 
factor. Therefore, there is negligible error introduced into 
the coordination-number calculations from use of  this 
approximation: 

r2 
Nij ~_ [Ref(kp)/Ref~(kp)]  f 47rr2pog~(r) dr. (10) 

r, 

In Table 2, the coordination numbers are estimated 
from the exact  dRDFs of  the NiEZr model  using a two- 
Gaussian fit for gl(r) .  The coordination numbers could 
not be calculated for the MosoNis0 model  because 
unphysical results are produced for the fitting of  two 
Gaussian curves to the first peak in the correct dRDF 
with the peak positions obtained f rom the weighted 
partial distribution functions. 

The effect on the coordination numbers is just  as 
anticipated from the above analysis. The Z r - N i  coordi- 
nation number  decreased by 4.3% while the Z r - Z r  
coordination number  increased by 12% when using the 
k-average approximation as opposed to the k-peak 
approximation. We note that, in calculating the peak 
areas, the Guassian curve is fit to the low-r  side of  the 
peak. This cannot be accurately determined for the Z r - Z r  
peak because the low-r  side is obscured by the Z r - N i  
coordination peak. 

Also listed in Table 2 are the coordination numbers 
calculated f rom our recent DAS experiments on the 
polymer  electrolyte [PPO]6ZnBr 2 (Fishbum & Barton, 
1995). In our original analysis, we used the k-averaged 
approximation of  the weighting factors. The coordination 
numbers changed slightly when using the k-peak 
approximation. The refined coordination numbers better 
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